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OVERVIEW 

 

Type 2 (or non insulin dependent) diabetes is one of the most common diseases in the western world, with over 
150 million afflicted worldwide. Currently, none of the available animal models used to aid research into 
diagnostics and new anti-diabetic drugs reflect all disease aspects in man. More detailed model characterization 
compared to man is therefore essential to help make better decisions on animal testing.  

Non-targeted metabolomics technologies have the potential for providing novel biomarkers of disease and drug 
efficacy and are increasingly being incorporated into biomarker exploration studies. Contextualization of 
metabolomics results is enhanced by integration with study data from other platforms such as transcriptomics, 
thus linking known metabolites and genes to relevant pathways and phenotypes, i.e. mapping genotype to 
phenotype.  

In this white paper we have described NMR-based metabolomic and transcriptomic results from the db/db 
diabetic mouse, one of the most extensively studied animal models of severe type 2 diabetes. To assist with cross 
platform integration we have used IPA-Metabolomics™ analysis. IPA-Metabolomics is powered by the Ingenuity 
Knowledge Base, a repository of molecular interactions, regulatory events, signaling and metabolic pathways, and 
gene to phenotype associations. 

The structures of 82 metabolites were identified that discriminated between the urines of diabetic db/db and 
control db/+ mice. Of these, 70 mapped to biological functions or pathways in IPA. Expected diabetes-related 
changes in lipid, gluconeogenesis, mitochondrial dysfunction and oxidative stress, and protein and amino acid 
metabolism were characterized by the metabolomic markers. Metabolites were also linked to changes in leptin, 
branched chain amino acid degradation, and vitamin metabolism. 

Follow-up analytical and biological validation studies to verify both the identification and biological reproducibility 
of the results are essential to confirm initial findings from non-targeted metabolomics studies. In this work, the 
integration of metabolomics and transcriptomics data via IPA-Metabolomics has facilitated the contextualization of 
probable markers of processes in the db/db mice related to clinical manifestations of diabetes. This has provided 
useful input into protocol development for biomarker validation studies, highlighting metabolites that may reflect 
processes of interest, and focusing in on possible biomarkers. 

 

INTRODUCTION 

 

METABOLOMICS BACKGROUND 

Biomarkers of disease, drug toxicity, and efficacy are increasingly needed in the preclinical and clinical setting for 
better evaluation of novel chemical entities, disease status, target validation, and treatment regimes (FDA 2004). 
Recent advances in technologies such as metabolomics, transcriptomics, and proteomics together with increased 
informatics support to analyze these data types, have greatly enhanced the screening for experimental 
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biomarkers, encouraging more scientists to include these strategies in their investigations. Metabolomics is unique 
among these technologies in providing potential for exploring genotype-phenotype relationships (2, 3, 4, 5, 7, 8) 
and environmental influences (6, 8, 10) and may also reflect function more directly than gene and protein effects 
(7). Metabolomics technologies are currently experiencing an exponential increase in their incorporation into 
biological studies, with applications ranging from physiological genomics and potential lead target validation (2, 9) 
through mechanistic toxicology (11, 12, 13, 14) and clinical pharmacology (15), disease investigation (9, 16, 17, 18, 
19), patient stratification (15, 20, 21, 22, 23), and ultimately personalized medicine (20, 24, 25). Included in this 
surge of metabolomic applications are also investigations of plant (26) and micro-organism/gut micro flora 
biochemistry (27, 28) and the impact of nutrition and the environment on human health (29, 30). 

There is continuing debate within the metabolomics community concerning the terminology associated with the 
field (21, 31, 32, 35). The term ‘metabolome’ typically refers to all of the low molecular weight metabolites of 
biological origin that are present in a biological organism and represent the metabolic status of an organism at the 
time of sample collection (36, 37). The detectable small molecules in a biological matrix may arise from 
intermediates of metabolism, signaling molecules or endogenous metabolites altered by phase 1 and phase 2 
transformations, or exogenous metabolites from the diet, environment, gut micro-flora or ingestion of drugs. 
Metabolomics is the study of some or all of these molecules (21, 36, 37, 73). For the purposes of mapping 
metabolites to tissue gene changes, as referred to in this article, the main discussion is focused on the endogenous 
components of the metabolome, although many transformed gut micro flora metabolites were also detected. 

There are several terms used to describe studies of the metabolome (metabolomics, metabonomics, metabolic 
profiling and others; 21, 33) and whilst there are subtle differences in the definitions of these terms, they are in 
practice synonymous; therefore metabolomics is used in this article to encompass all.  

Two distinct philosophies are applied to metabolomic studies depending on whether an existing hypothesis is 
being tested (targeted) or a more open investigation is on-going (non-targeted). Targeted approaches typically 
usually use standard clinical chemistry platforms or chromatography (either gas (GC) or liquid (LC)) coupled with a 
detector such as mass spectrometry (MS). The most popular platforms used for non-targeted metabolomics 
include nuclear magnetic resonances (NMR) spectroscopy and MS (34) although other forms of spectroscopy 
(Raman, infrared) have also been used (35).  MS techniques often involve prior separation by chromatography to 
reduce variability caused by ion suppression. The data discussed in this article is non-targeted NMR-based 
metabolomics. 

Extensive validation is required prior to an ‘omic-detected biomarker, or group of biomarkers, gaining acceptance 
for widespread use in the preclinical and clinical setting. In the first instance validation of a metabolomics-derived 
marker is usually analytical, working up a targeted assay on molecules originally highlighted by non-targeted 
approaches. However, a key part of subsequent validation is investigation of the biological context of the changes 
in the biomarker(s). To explore the biological relevance of metabolomic results it is necessary to integrate this data 
with associated study data to characterize effects across time, dose, disease severity, and where available in the 
context of associated gene changes.  Interpretation of the integrated data in the context of high quality biological 
and chemical knowledge enhances follow-up work both by narrowing the focus to key pathways and also to 
provide some insight into the likely specificity of potential biomarkers. 
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INTEGRATION OF METABOLOMIC AND TRANSCRIPTOMIC DATA 

A major challenge in the integration of ‘omics data (transcriptomics, proteomics and metabolomics) is how best to 
compare and correlate these large datasets to provide the most meaningful biological context. A considerable 
amount of research is currently in progress in industrial and academic-based groups to address this challenge both 
at the data level, using statistical and chemometric methods, and at the biology level, using pathway analysis (39, 
40, 41, 42, 43, 44). The latter approach uses extensive databases of metabolite and gene interactions to link known 
metabolites and genes to relevant pathways and phenotypes, i.e. mapping genotype to phenotype. In either case 
distinguishing and deconvoluting pharmacological, toxicological or disease effects that may all be relevant to a 
particular experiment can be particularly challenging. 

 

THE INGENUITY PLATFORM  

To assist with cross platform integration we have used IPA-Metabolomics ™ analysis to interpret transcriptomic 
and metabolomic data from a diabetic mouse study.  IPA provides biological context to the metabolomics data, 
links metabolic changes to disease-relevant pathways and phenotypes and assists in the selection of a subset of 
metabolomic markers for further study. All metabolites and genes included in the mapping were selected based on 
statistical significance within the study and also consistency in significance and direction of metabolite or transcript 
changes across two studies. 

IPA-Metabolomics  is powered by the Ingenuity Knowledge Base, a repository of molecular interactions, regulatory 
events, signaling and metabolic pathways, and gene to phenotype associations that provide the building blocks for 
pathway construction. IPA contains millions of findings from the full text of the life sciences literature that describe 
relationships between chemicals, proteins, genes, complexes, cells, cellular components, tissues, drugs, cellular 
processes, diseases and clinical phenotypes.  IPA also has extensive libraries of metabolic and cell signaling 
pathways, a robust up-to-date synonym library, and extensive contextual details, including species specificity, 
localization, mutations, epigenetic modifications, and experimental conditions. The structured, detailed content in 
the knowledge base enables researchers using IPA to analyze and interpret combined ‘omics data, visualize 
metabolite and gene interactions, and place data in a proper biological and chemical context.  

 

CASE STUDY BACKGROUND 

Type 2 (or non insulin dependent) diabetes is one of the most common diseases in the western world with over 
150 million afflicted worldwide, many of whom are unaware that they have the disease (45). Complications of 
diabetes are predominantly associated with poorly-controlled levels of blood glucose and include micro and macro 
vascular disease leading to peripheral neuropathy, kidney and eye complications and coronary heart disease (74). 

Animal models of diabetes are used to aid discovery of better disease diagnostics and for testing novel chemical 
entities that may have anti-diabetic activity (46). However none of the current animal models reflect all aspects of 
the disease so that more detailed elucidation of the underlying processes in the animal model compared to man 
are essential to help make better decisions on animal testing. In this study we have used NMR-based metabolomic 
and transcriptomic data from the db/db diabetic mouse, one of the most extensively studied animal models of 
severe type II diabetes (46).  
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Db/db mice lack a functioning leptin receptor resulting in defective leptin-mediated signal transduction. This 
causes chronic overeating, obesity, severe hyperinsulinaemia and hyperglycemia, dyslipidemia and hyperphagia 
and other manifestations including kidney disease and fibrosis (45, 47, 48). 

METHODS 

ESTABLISHING A METABOLITE PROFILE FOR DB/DB MICE AND IDENTIFICATION OF EXPLORATORY 
BIOMARKERS 

Data is taken from Connor et al 2008. Urine samples were collected over a 6 hour period from adult male db/db 
and db/+ mice at 8 weeks and again at 9 and 10 weeks of age (n=10 per group). Samples were buffered to pH 7 
and NMR data acquired on a 700 MHz Bruker spectrometer using standard experiments (50). Spectra were then 
processed using standard metabolomics software (Bruker Topspin, Bruker Amix, and ACD) and analyzed by 
multivariate (MV) and univariate (UV) statistics. MV methods included principal components analysis (PCA), partial 
least squares (PLS) and PLS-discriminant analysis (PLS-DA). UV methods included ANOVA and post hoc tests, 
correlation and regression. Metabolites that were significantly different between db/db and db/+ mice across time 
were included in subsequent pathway mapping analysis. 

NMR signals that were significant by either statistical method were then assigned initially with reference to 
standard databases of NMR spectra (database: HMDB (www.hmdb.ca) (51), Chenomx NMR Suite v4.0, GSK 
proprietary database, Bruker Amix Spectrabase) and then extensive follow-up experiments were performed. 
Follow-up experiments consisted of 1D and 2D NMR and LC/MS structure elucidation and addition of standards to 
the samples. Once metabolites had been assigned, several were noted to have arisen from gut micro flora. These 
were excluded from cross platform pathway mapping because no transcriptomics data was gathered from the gut 
micro flora in this experiment.  

 

IPA-METABOLOMICS™ ANALYSIS: 

METABOLITE TRANSFORMATION 

Perhaps a unique and particularly challenging characteristic of metabolomics investigations is the tendency for 
intermediates/end products of metabolism to undergo further phase 1 or phase 2-type transformations or 
chemical reactions. There were several examples of this in the db/db metabolomics dataset (Table 1); 
isovalerylglycine was manually mapped as isovalerate and isovaleryl CoA, acknowledging that isovaleryl CoA is first 
hydrolyzed to the free acid and then conjugated to glycine prior to excretion. This process is common for most 
fatty acids, which are observed as phase 2 conjugates in urine, but potentially the free acid or CoA derivative in 
tissues.  

Chemical modification of metabolites is also common for metabolic intermediates that are chemically very 
reactive. For example isocaproaldehyde, the product of cleavage of the side chain of cholesterol in the formation 
of C21 steroids, is quickly oxidized to its acid form, which then undergoes excretion as its glycine conjugate, 
isocaproylglycine. Metabolites (n=78) were mapped as their parent molecule using their KEGG (61), PubChem 
(http://pubchem.ncbi.nlm.nih.gov/)(62) and CAS (http://www.cas.org/)(63) identification number.  

http://www.hmdb.ca/
http://pubchem.ncbi.nlm.nih.gov/
http://www.cas.org/
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In some cases transformation or chemical modification may give rise to less predictable products. These cases 
require detailed knowledge of drug metabolism and organic chemistry and the transformation path may need 
more evidence; no examples of these types of cases are used in this report. 

Table 1: Conversion of Phase 1 and Phase 2 –type metabolites to parent metabolite on metabolic pathway 

Urine-detected metabolite Related metabolite suitable for mapping
Isobutyryl glycine(1) Isobutyryl coA, branched chain fatty acid(6)

Isovaleryl glycine(1) Isovaleryl coA, branched chain fatty acid(6)

Caproyl glycine(1) Hexanoyl coA
Malonate Malonyl coA
Alpha hydroxyvalerate(2) Pentanoyl coA
Alpha hydroxybutyrate(2) butyrl coA
Alpha hydroxycaproate(2) hexanoyl coA
Isocaproyl glycine(3) Isocaproaldehyde
Phenyl Sulphate(4) Phenol
Phenylacetylglycine(5) Phenylacetate  

 

(1) Fatty acids are usually metabolized via their coenzyme A derivatives and often excreted as their glycine conjugates (53, 54, 55). In order to 
explore the biochemical context of glycyl fatty acid derivatives, in addition to acyl CoA dehydrogenases, these components were mapped as their 
CoA derivatives. 

 (2) Short chain fatty acids are substrates for several cytochrome p450 enzymes which hydroxylate at the alpha position via a free radical 
mechanism (52). 

(3)Isocaproaldehyde is formed from the side chain cleavage of cholesterol and is chemically oxidized to its acid (56, 57). It is then glycine-
conjugated prior to excretion (58). 

(4)Phenol, a metabolite of benzene is excreted in urine as its sulfate and glucuronide conjugates (59). 

(5)Phenyl acetate, a degradation product of phenyl alanine, is excreted as its glycine conjugate in rodents and glutamine conjugate in primates 
(60). 

(6)Literature references to short branched-chain fatty acids often refer to them generically as a chemical class rather than each individual 
metabolite (61). This generic term was therefore also included for initial pathway mapping investigations. 

TRANSCRIPTOMICS DATA 

 To determine whether metabolomic data for urine was associated with tissue mRNA changes that were relevant 
to type II diabetes, transcriptomics data was collected for three tissues most affected by diabetes, i.e. liver, 
subcutaneous fat and gastrocnemius muscle. Tissues were harvested at necropsy on week 9 from the same 
animals that provided samples for metabolomics analysis. Transcriptomic data were acquired using Affymetrix 
Genechip® arrays following a standard protocol. Data were processed using Affymetrix software and analyzed using 
ANOVA and PLS-DA. Transcriptomics data included in pathway mapping were significant by ANOVA in two 
independent studies with a consistent direction of change. The final transcriptomics datasets for integration with 
metabolomics data included 2912 and 3901 significantly up and down-regulated adipose genes respectively, 1791 
up and 2520 down-regulated liver genes and 1626 up and 1513 down-regulated muscle genes. 
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RESULTS 

METABOLITE MAPPING: 

IPA analysis to map urine-borne metabolite markers quickly identified biological pathways and processes that were 
most relevant in the dataset to the diabetic animal model (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diabetic Animal Model metabolite profile uploaded into IPA. 82 metabolites which were significantly different between diabetic 
db/db and wild type db+ were mapped to their corresponding metabolites in the IPA Knowledge Base. 70 of these metabolites mapped to 

biological functions or pathways in the database. 

Well-documented metabolic manifestations of diabetes associated with insensitivity to insulin include 
uncontrolled lipogenesis and hepatic glucose production, mitochondrial dysfunction and altered protein turnover 
(64, 65, 67, 75). Initial analysis using IPA-metabolomics showed that several of the observed metabolite markers 
were involved in key networks (Figure 2), bio functions (Figure 3) and signaling and metabolic pathways (Figure 4) 
associated with lipid and carbohydrate metabolism and protein degradation. 
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Figure 2: Top networks of metabolite markers are associated with lipid metabolism, involving 21(top network) and 14 (5th network) 
metabolites. 

 

 

 

 

 

 

 

 

Figure 3: Molecular and Cellular functions associated with metabolite markers are carbohydrate metabolism (11 metabolites), lipid 
metabolism (13) and protein degradation (protein synthesis (2) and associated amino acid metabolism (12)). 
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Figure 4: This IPA pathway overview indicates that metabolite markers reflect energy metabolism (pyruvate, nicotinate and pantothenate 
metabolism; citrate cycle) and protein degradation (urea and amino group metabolism; valine (val), leucine (leu) and isoleucine (isoleu) 

degradation and biosynthesis). A total of 24 canonical pathways were highlighted by IPA as possibly being relevant to the biological context 

of the metabolite markers. 

 

These findings validate both the methods used to identify metabolomics markers of disease, as well as IPA’s ability 
to link those markers to disease-related pathways and phenotypes relevant to the mouse model. Specifically, the 
expected diabetes-related changes in lipid, gluconeogenesis, protein and amino acid metabolism are reflected by 
the metabolite changes observed between db/db mice and their lean litter mates (Figures 2, 3 and 4).  

More detailed examination of the metabolite-centric networks showed that there were possible interactions 
between metabolite markers and several genes implicated in type 2 diabetes. These included genes with a role in 
lipid metabolism such as leptin (LEP) and lipoprotein lipase (LPL), glucose transporters including GLUT-4 (SLC2A4), 
and mitochondrial uncoupling protein UCP3. Genes and metabolites involved in branched chain amino acid (BCAA) 
degradation, gluconeogenesis, and glycolysis and pantothenate biosynthesis were also highlighted in several 
networks (Figure 5). 

 

 

 

 

(continued on next page) 
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Figure 5: Network describing lipid metabolism, small molecule biochemistry and molecular transport. Leptin (LEP) appears at the centre of 
the network; LEP levels regulate UCP1, UCP3, LPL, SLC2A4 (GLUT-4) and G6PC, which are also visible in this network. Key: green nodes = 

down-regulated, red nodes = up-regulated. 

METABOLITE AND GENE MAPPING 

One of the aims of the urine metabolomics work is to provide putative biomarkers of disease that can be 
monitored to determine the effect of novel chemical entities (NCEs) and also possibly to translate to human 
studies. To gain additional confidence that the urinary metabolite changes may be associated with tissue changes, 
rather than just a product of altered kidney re-absorption, tissue transcriptomics data were overlaid on the 
metabolite-centric networks and pathways (see Metabolite Mapping sections). Adipose transcriptomics 
information overlaid on the network illustrated in Figure 5 confirmed that the majority of the lipid-related 
functions described in this network were also reflected in the transcriptomics results (Figure 6). In particular LEP, 
LPL, CD36 and CPT1A were all up-regulated in adipose tissue of db/db mice compared to db/+ whilst GPAM, UCP3, 
AMPK and GLUT-4 were all down-regulated. A mutation in the leptin receptor (LEPR) is the main genetic defect in 
the db/db mouse, resulting in the diabetes-like symptoms that characterize the model. Extensive, manually-
curated literature accessed via IPA provided information on the role of LEPR in db/db mouse and other species 
(Figure 6) (46); highlighting the role that Leptin plays in diabetes in humans (68, 69). 
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Figure 6: Adipose transcriptomics data superimposed on the metabolite network shown in Figure 5. Leptin (LEP) is central to the network. A 
mutation in the LEP receptor gives rise to the diabetes symptoms shown by the db/db mice (Figure 7). Leptin is regulated by many 

intermediates of metabolism including insulin (INS1), PPAR gamma, glucose, glucosamine and is implicated in several metabolic diseases 
including diabetes, hyperinsulinism, obesity, hepatic steatosis and many others. 

 

 

 

 

 

 

 

 

 

 

 

(continued on next page) 
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Figure 7: IPA Molecule summary (top) and Gene View showing categorized, manually-curated references related to the affects of mutations 
in the LEPR receptor and role of leptin in metabolism in relation to the db/db mouse. Over a 1000 references (1791) were also highlighted in 

the Gene View that relate to the role of leptin, LEP and LEPR in diabetes in human, mouse and other species. 

 

Using the ‘Function & Disease’ overlay tool (Figure 5), in addition to emphasizing genes related to non insulin- 
dependent diabetes mellitus (see connections highlighted in yellow), LEP and UCP3 were also highlighted as being 
involved in gluconeogenesis and glycolysis, together with G6PC, and SLC2A4 (GLUT-4). By sequentially 
superimposing adipose, liver and muscle transcriptomics results on the network (using the ‘Analyzed Dataset 
overlay’ function), it was possible to confirm that G6PC, which is a key controlling point in gluconeogenesis, was 
up-regulated in liver tissue but not adipose or muscle. The primary organ that normalizes blood glucose through 
gluconeogenesis is the liver. During diabetes a condition of accelerated gluconeogenesis occurs due to lack of 
tissue response to insulin. There is also an increasing demand for substrate (lactate, amino acids, glycerol and 
pyruvate) generated by lipid, carbohydrate and amino acid metabolism. It was therefore of interest to explore the 
db/db metabolite and transcriptomics results in relation to gluconeogenesis, and pathways generating substrates 
for gluconeogenesis, to see how the metabolomic results may relate to this process.  

The citrate cycle, with glycolysis, is the main source of pyruvate, a key substrate for gluconeogenesis. Many of the 
metabolite and transcriptomics components of the citrate cycle were altered in the db/db mice compared to 
controls. Urinary concentrations of malate, citrate, cis-aconitate, 2-oxoglutarate, succinate and fumarate were all 
substantially increased in the diabetic mice (Figure 8). Overlay of the liver, adipose and muscle transcriptomics 
results confirmed that liver transcripts were up-regulated, correlating with metabolite data, while adipose genes 
(as with glycolysis and many other metabolic processes in adipose) were down-regulated (Figure 9).  Muscle genes 
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were also predominantly down regulated (Figure 9).  These results are consistent with an up-regulation in citrate 
cycle in the liver in response to increased gluconeogenesis. For conclusive verification that the urinary metabolites 
are confirming liver citrate cycle activity, the next step would be to obtain serum levels of the same components, 
as the citrate cycle is also active in the kidney. 

 

Figure 8: Citrate Cycle overlaid with metabolomic (rectangle) and liver transcriptomics (oval) results. Up-regulated components are colored 

red, and down-regulated green. 

 

 

 

 

 

 

 

 

(continued on next page) 
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 Adipose          Muscle 

 

Figure 9: The canonical pathway for the Citrate Cycle overlaid with metabolomic (rectangle) and adipose and muscle transcriptomics (oval) 

results. Up-regulated components are colored red and down-regulated colored green. 

 

The majority of transcripts for liver genes involved in gluconeogenesis were also up-regulated while those for 
adipose and muscle were down-regulated, providing additional confirmation that liver gluconeogenesis is up-
regulated in the db/db mice compared to controls (Figure 10).  

Liver Adipose MuscleLiver Adipose Muscle

 

Figure 10: Gluconeogenesis pathway mapping metabolomic and transcriptomics results showing an up-regulation in the pathway in liver but 
not adipose of muscle. 
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The network shown in Figure 5 also highlighted that branched chain ketoacid dehydrogenase (BCKDHA) was down-
regulated in adipose suggesting that the metabolism of branched chain amino acids (BCAAs) was altered in db/db 
mice. In the liver, a general increase in amino acid and amino group metabolism was observed (Figure 11) including 
the BCAAs, consistent with increased protein degradation, which may be driven by the increased demand for 
glucogenic amino acids. The opposing effect in adipose BCKDHA was further explored by analyzing the liver, 
adipose and muscle transcriptomics and metabolomics results relating to the Valine, Leucine and Isoleucine 
degradation pathway (Figure 11).  Urinary valine was increased in db/db mice, correlating with increased serum 
levels of BCAAs (valine, isoleucine). However, all BCAA degradation metabolite intermediates were decreased, in 
agreement with adipose genes and muscle genes for this pathway. The key controlling enzyme (branched chain 
amino acid aminotransferase; BCATm) was only altered in adipose tissue. Literature reports have highlighted that 
BCAAs are implicated in leptin secretion from adipose and may be involved in the development of diabetes and 
obesity. There are several reports indicating that enzymes involved in BCAA metabolism are depressed in 
transgenic animals with obese phenotype (71, 72). Recent reports suggest that in obese and diabetic animals and 
humans the increased circulating BCAAs, as seen in this work, may be the result of reduced catabolism rather than 
simply a product of increased protein degradation (76). These results support this hypothesis. 

 

Figure 11: Valine, Leucine and Isoleucine degradation canonical pathway, overlaying urinary metabolomic with adipose (left) and liver (right) 
transcriptomics results. An up-regulation in the degradation pathway was observed in liver but a down regulation in adipose or muscle 
compared to non-diabetic mice. The urinary metabolite profile was increased valine with decreased degradation products 4 methyl-2-

oxopentanoate, 2-oxoisopentanoate, 3 methyl -2-oxopentanoate, 3-methylbutanoate, and isobutyryl coA (excreted as isobutyrylglycine), 
reflecting more the events in adipose tissue than liver. 

In addition to perturbed lipid, glucose and amino acid/protein metabolism, links between several metabolomic 
markers (citrulline, glucose, sucrose, valine, N-methyl nicotinamide and its metabolites) and NOS3, and superoxide 
were highlighted in metabolite-centric networks (Figure 12). NOS3 has been implicated in diabetes (IPA Gene View 
for NOS3; Figure 13, Figure 14); increased oxidative stress in diabetes mellitus may underlie the development of 
endothelial cell dysfunction by decreasing the availability of nitric oxide (NO) as well as by activating pro-
inflammatory pathways. Decreased production and/or increased utilization of NO and uncoupling of mitochondrial 
oxidative phosphorylation generates free radicals (superoxide) leading to endotheliopathy (77). 
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Figure 12: Metabolite-centric network with adipose transcriptomics results overlaid depicted interactions related to tissue morphology, free 
radical scavenging and metabolic disease. An increase in urea cycle and amino group metabolism is suggested, which is confirmed by 

examination of the canonical pathways for urea, amino group and amino acid metabolism (increased alanine, valine, creatine, creatinine, 
glycine, threonine, lysine, tyrosine, ornithine, citrulline). 

 

 

 

 

 

 

 

 

 

 

(continued on next page) 
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Discover the Biology
 

Figure 13: Gene View of NOS3 provides key database information linking NOS3 to diabetes and related disease processes. 
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Figure 14: Gene View of NOS3; Disease findings. 
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SUMMARY AND CONCLUSIONS 

The IPA analysis of NMR-detected urine-borne metabolite changes between db/db diabetic mice and their 
euglycemic litter mates highlighted at least 24 distinct pathways. The pathways most affected were: 

x Amino acid degradation (thr, val, lys, leu, ileu, gly, tyr, trypt)  

x Amino group metabolism (creatine synthesis and degradation), urea cycle, (glutamate metabolism and 
the ornithine pathway)  

x Fatty acid biosynthesis, degradation and transport 

x DNA and protein synthesis (RNA synthesis and purine and pyrimidine metabolism). Changes in urinary 
protein, MUP and NAG 

x Energy metabolism (tca cycle, glycolysis, glycolate-glyoxylate pathway, NAD degradation, glucose 
metabolism)  

x Steroid hormone synthesis  

IPA analysis of the metabolite-centric networks and the cross-platform transcriptomics and metabolomics results 
effectively linked many of the metabolite changes to pathways involved in gluconeogenesis, and those generating 
substrates for gluconeogenesis, mitochondrial dysfunction and oxidative stress, and altered protein turnover. 

In the liver, transcriptomics results confirm an increase in gluconeogenesis and associated increase in citrate cycle 
intermediates to provide pyruvate as a substrate for glucose. The increases in citrate cycle intermediates in the 
urine are probably arising from the increased pathway activity in the liver, although further work is necessary to 
confirm levels in the liver and serum of these metabolites. It was interesting to note that these pathways, together 
with those for other mitochondrial-related functions were down-regulated in both muscle and adipose. 

Amino acid metabolism for the majority of amino acids is carried out predominantly by the liver and many amino 
acids are also used by the liver as substrates for gluconeogenesis. Transcriptomic and metabolomic results 
indicated an increase in protein degradation with increases in many amino acids (including alanine, valine, 
creatine, creatinine, glycine, theonine, lysine, tyrosine, ornithine, citrulline). BCAAs (valine, leucine and isoleucine) 
are degraded in muscle and adipose rather than liver and this process was reduced in both tissues. Recent reports 
have implicated BCAAs in diabetes and obesity and suggested that their increased serum levels in these disease 
states may arise from decreased catabolism as well as increased proteolysis. The results from this study are in 
agreement with this (76). 

Of the 82 metabolites uploaded into IPA, 70 were successfully mapped to functions and pathways, the remaining 
12 mainly resulting from gut micro flora metabolism. Exploring the biological context around these 70 markers 
using IPA indicated that the majority of the markers were implicated in known diabetic processes, although many 
(BCAAs, nicotinamide metabolites, pantothenic acid) have not previously been suggested as possible markers for 
diabetes. 

Follow-up analytical and biological validation studies to verify both the identification and biological reproducibility 
of the results are essential to confirm initial findings from non-targeted metabolomics studies. In this work, the 
integration of metabolomics and transcriptomics data via IPA-Metabolomics ™ has facilitated the contextualization 
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of probable markers of processes in the db/db mice related to clinical manifestations of diabetes. This has 
provided useful input into protocol development for biomarker validation studies, highlighting metabolites that 
may reflect processes of interest and focusing in on possible biomarkers. 
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